
J Math Chem (2013) 51:382–389
DOI 10.1007/s10910-012-0089-4

ORIGINAL PAPER

EMP as a similarity measure: a geometric point of view

Ramon Carbó-Dorca · Emili Besalú

Received: 24 July 2012 / Accepted: 12 September 2012 / Published online: 22 September 2012
© Springer Science+Business Media New York 2012

Abstract Soft Coulomb potentials constructed by multiplying the classical potential
by a Gaussian function (or a linear combination of them) permit to consider a wide
family of distributions which limit with the classical potential when the exponent
becomes infinite. Soft Coulomb potentials can be employed as potential operators
with first order density functions in order to compute families of soft electrostatic
molecular potentials (EMP) for any quantum object. The soft EMP family possesses
two interesting computational features: being not only formally equivalent to classi-
cal EMP, but finite everywhere, even at the atomic nuclei. The structure of the soft
Coulomb operator family yielding soft EMP can be easily related with a quantum
similarity integral feature.

Keywords Electrostatic molecular potentials (EMP) · Soft coulomb potentials ·
Soft EMP · Similarity integrals · Density functions origin shift · Soft EMP origin shift

1 Introduction

The study on electrostatic molecular potentials (EMP) since the definition of Scrocco
et al. [1] has become a successful current procedure and a widespread tool in quantum
chemical literature. A crude search over several assorted publication sources yields
more than fifteen thousand references, so just some varied choice of modern work on
EMP will be given [2–14] here. However, it must be also stated that the main charac-
teristic trend of published work on EMP corresponds to an uncritical application of the
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standard computational procedures, excepting in some limited amount of publications,
among these one might quote the work of Gadre [15–21].

In order to justify the aim of this paper, we can say that many years ago in our
laboratory we were interested into approximate forms of EMP [22–26] and into the
possibility to compare within the quantum similarity framework EMP belonging to
different molecular structures [27,28] a path which can be traced in contemporary
work by other authors [29,30]. Recently, we were trying to obtain simple but reliable
EMP patterns under the atomic shell approximation framework (ASA) (see for more
details on ASA for example references [31,32]) continuing an idea which was early
introduced [33]. In a novel paper [34], trying to generalize an old result of Weinstein et
al. on atomic EMP [35], promolecular ASA density functions (DF) have been demon-
strated to be everywhere positive. In the same study has been found that any polarized
ASA DF construct appears to be reliable enough to be worth to consider for further
research and could be taken as a first step towards the comparative study of two or
more EMP.

Taking into account these introductory considerations, the present paper will be
constructed in the following way. First, soft charges and Coulomb potentials will be
defined and their properties studied. Such preliminary settings will provide the con-
cept of soft EMP next. Then it will be shown that the soft EMP definition permits to
consider it as a quantum similarity integral. Finally, a geometric point of view will
provide with a final quantum similarity touch the structure of soft EMP.

2 Soft charges and soft Coulomb potentials

In fact EMP corresponds, as it is well-known, to obtain the electrostatic interaction
energy between a quantum object, represented by a known first order density func-
tion and a positive point charge. Such interaction energy is equivalent to a first order
correction to the global electronic energy, when a perturbation is considered with the
form of a Coulomb operator with origin at any point R of three-dimensional Euclidean
space, which in atomic units, thus with a unit charge embedded into the operator, can
be written as:

C (r; R) = |r − R|−1 . (1)

Recently, we did propose [36] to develop the study of the possibility consisting in the
fact that, instead of replacing the supposedly point charge located, at the reference
point: R by a Gaussian distribution as follows.

First, the structure of the EMP interacting point charge can be written even more
correctly, using a Dirac distribution, which could be considered implicitly present in
Eq. (1):

q∞ = +eδ (r − R) . (2)
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Then, having realized how to write the point charge structure, the point charge (2)
might be substituted by a scaled soft Gaussian distribution, employing the definition:

qα = κ exp
(
−α |r − R|2

)
⇒ lim

α → ∞
κ = +e

qα = q∞, (3)

where the parameter κ is taken as a real number, which might represent a charge num-
ber and can also contain a Minkowski normalization factor for the Gaussian function,

which, as it is well-known, in this case can be set to the value:
(

α
π

) 3
2 . In fact the

parameter κ can be considered a scale factor, affecting all the possible manipulations
of the soft Coulomb potential.

With this family of soft charges in mind, obviously enough equation (1) transforms
into what can be called a soft Coulomb potential, which can be written by means of
the composite function:

C(r; R |α; κ ) = κ exp
(
−α |r − R|2

)
|r − R|−1, (4)

which in turn transforms into the Coulomb potential (1) as a limit, according to the
definition (3). For all the soft Coulomb potentials with finite exponent, the following
integral is convergent everywhere in three dimensional space:

∀R : 〈C (r; R |α; κ )〉 =
∫

D

C (r; R |α; κ ) dr = κ

(
2π

α

)
,

a result which can be easily deduced from the chapter of Saunders [37] dedicated to
molecular integrals over GTO. Of course, the integral diverges when the exponent
reaches the infinite limit value providing the Coulomb potential.

In fact, the previous development just indicates that the whole family of soft Cou-
lomb potentials can be observed as a family of distributions (see for example reference
[38] for more details on the distribution concept), with a limit provided by the Dirac’s
distribution associated to a classical point charge Coulomb potential as described in
Eq. (2).

A final remark on the significance of the soft Coulomb potentials can be straightfor-
wardly proposed. The nature of the definition in Eq. (3) is such as not only encompasses
the possible description of a first order interaction of a molecular structure with a pro-
ton as classical EMP do, but can be used to roughly simulate other heavier cations like
Li+ and similar atomic positive charged atoms.

In fact, to further justify the description of soft Coulomb potentials it can be now
noted how accurately the simple ASA atomic DF description [31,32] behave when
approximating DF for atoms as linear combinations of Gaussian functions. Also, a
related but more involved operator, containing both Gaussian linear combinations and
projectors, was constructed many years ago in order to describe within HF theoretical
context the atomic cores with the so-called atomic model potential framework, see for
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example references [39–42]. Finally, one of us has proposed a comparable solution to
take into account nuclear fields in molecular calculations [43].

In this way, if necessary the soft Coulomb potential (3) can be modified in the sense
that instead of a unique Gaussian function a linear combination of this kind of func-
tions can be used. The results obtained up to here and the discussion which follows
will not be modified.

3 Soft EMP

The electrostatic interaction energy of the soft Coulomb potential (4) and a well-
defined first order DF ρ (r) of any quantum object can be now written as:

V (R |α; κ ) =
∫

D

ρ (r)C (r; R |α; κ ) dr. (5)

Expression (5) provides a family of quite similar soft EMP, every one of them trans-
forming smoothly into a limiting classical EMP as the soft charge definition in Eq. (3)
limits with a classical point charge.

The added interest of such set of functions corresponds to the fact that, for finite
values of the parameter α, the soft EMP is finite everywhere. This characteristic per-
mits to look ahead to obtain stable algorithms to be used for similarity comparisons
between soft EMP of two or more quantum objects.

4 EMP rethought as a quantum similarity integral

Nevertheless, Eq. (5) not only avoids computational divergence at molecular atomic
sites as a main characteristic. Moreover, the soft EMP family can be successfully con-
sidered from the point of view of some new kind quantum similarity integral. EMP can
be studied in a theoretical similarity way, because when looking at the DF form, one
might use a usually forgotten formalism, dividing it into two parts, the positive nuclear
ρN and the negative electronic ρe DF’s respectively. One can proceed as follows:

ρ (r) = ρN (r) − ρe (r) (6)

with the additional general definition:

ρN (r) =
∑

I

Z I δ (r − RI ),

where {Z I } are atomic numbers and {RI } the set of molecular atomic coordinates.
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Therefore, the EMP expression in Eq. (5) corresponds to a difference of two for-
mally similar integrals:

V (R |α; κ ) =
∫

D

ρN (r) C(r; R |α; κ ) dr −
∫

D

ρe (r) C(r; R |α; κ ) dr. (7)

Observing the integral pair in Eq. (7) one can deduce that both correspond to some kind
of overlap measure between two distributions. In fact, both of them taken separately
can be easily considered quantum similarity measures between a density function and
a soft Coulomb distribution.

5 The geometric connection

One of the possible mathematical landscapes from where the soft EMP can be observed
also corresponds to a geometrical situation, which as far as the authors know has not
been discussed in the literature yet.

The whole state of affairs, which has been debated up to now here, can be also
studied starting from the fact that the three function set used in EMP equation (7):

P = {ρN (r) ; ρe(r) ; C(r; R |α; κ )}

can be observed as nothing else than the definition of some triangle within the Hil-
bert space, where the three functions are described, each function defining one of the
triangle vertices.

For positive values of the charge parameter κ , the whole set P belongs to a function
semispace, which contains all the non-negative functions which can be defined in the
associated Hilbert space. In fact, because the sign of κ , can be either positive or neg-
ative and, as commented before, the parameter plays the role of scale factor over the
soft Coulomb potential, then it just provides a global change of sign of the resulting
soft EMP (7). Thus one can safely consider positive the charge parameter without loss
of generality.

Consequently, from this point of view the set P can be safely considered as the
vertices of some triangle constructed into some Hilbert semispace. It has been already
discussed [44] how the subset of the set P : D = {ρN (r) ; ρe (r)} although made of
two elements only, becomes linearly dependent upon an origin shift, performed in the
way the total DF is defined, as in Eq. (6).

Accordingly, upon such an origin shift operation, the set P , transforms into a new
set: S = {ρ (r); C(r; R |α; κ ) − ρe(r)} = {ρ (r); F(r; R |α; κ )}.

In this way, the structure of the original function triangle described by the set P will
remain invariant. The origin now will be one of the triangle vertices and consequently,
taking into account the set S made of two vectors only, the triangle can be equally
well defined.

Hence, it can be thought, that the similarity integral in Eq. (7) corresponding to
the soft EMP, can be also evaluated in the geometric framework of the origin shift as
provided by the set S and in this way a new similarity integral can be computed:
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X(r; R |α; κ ) =
∫

D

ρ(r) F(r; R |α; κ ) dr = 〈ρ (r)F(r; R |α; κ )〉 = 〈ρF〉, (8)

which using the simplified integral notation provided in the same equation, can be
decomposed into four integral terms, which can be easily reduced to two contribu-
tions:

〈ρF〉 = 〈ρN C〉 − 〈ρeC〉 − 〈ρN ρe〉 + 〈ρeρe〉 = V (r; R |α; κ ) + Z .

The first two integrals correspond to the usual soft EMP as defined in Eq. (7), while
the two last ones are constants related with the molecular quantum electronic self-
similarity (see, for a modern source with more details on quantum similarity integrals
reference [45]):

θ = 〈ρeρe〉 =
∫

D

ρ2
e (r) dr

and the overlap quantum similarity integral between the nuclear charge distribution
and the electronic density function:

〈ρN ρe〉 =
∑

I

Z I

∫

D

δ (r − RI )ρe (r) dr =
∑

I

Z Iρe (RI ),

the set {ρe (RI )} corresponds to the values of the considered DF at each of the molec-
ular nuclei, the so-called densities at the nuclei.

Then, in general, taking into account these considerations one can write:

Z = θ −
∑

I

Z I ρe (RI ),

corresponding to a constant, which can be related in turn to the origin shift using the
electronic energy part of the DF, generating in such a manner an origin shifted soft
EMP family.

6 Conclusions and final remarks

The plausible description of a soft EMP permits to substitute the classical Coulomb
operator by a family of soft Coulomb potentials, which can act as distributions.

This fact permits to construct for any molecule at any level of the theory a family
of soft EMP, which behave practically as the classical EMP but possess the computa-
tionally valuable property consisting into that they are everywhere finite, even at the
nuclei.

The soft EMP definition also allows reinterpreting the integral, yielding the soft
EMP family, as a quantum similarity integral relating three distribution functions.
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This set of involved distribution functions permits studying from a geometrical
point of view the entire problem of soft EMP evaluation. This fact yields as a result
a soft EMP origin shift, connected with electronic quantum selfsimilarity and nuclei-
electron interaction.

The computational and practical aspects of the soft EMP procedures under the ASA
framework will be published elsewhere [36].
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